Q-factorial Gorenstein Toric Fano Varieties with Large Picard Number

نویسنده

  • BENJAMIN NILL
چکیده

In dimension d, Q-factorial Gorenstein toric Fano varieties with Picard number ρX correspond to simplicial reflexive polytopes with ρX+d vertices. Casagrande showed that any d-dimensional simplicial reflexive polytope has at most 3d vertices, if d is even, respectively, 3d − 1, if d is odd. Moreover, for d even there is up to unimodular equivalence only one such polytope with 3d vertices, corresponding to (S3) with Picard number 2d, where S3 is the blow-up of P at three non collinear points. In this paper we completely classify all d-dimensional simplicial reflexive polytopes having 3d − 1 vertices, corresponding to d-dimensional Q-factorial Gorenstein toric Fano varieties with Picard number 2d− 1. For d even, there exist three such varieties, with two being singular, while for d > 1 odd there exist precisely two, both being nonsingular toric fiber bundles over P. This generalizes recent work of the second author.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume and Lattice Points of Reflexive Simplices

Using new number-theoretic bounds on the denominators of unit fractions summing up to one, we show that in any dimension d ≥ 4 there is only one d-dimensional reflexive simplex having maximal volume. Moreover, only these reflexive simplices can admit an edge that has the maximal number of lattice points possible for an edge of a reflexive simplex. In general, these simplices are also expected t...

متن کامل

Kaori Suzuki

This paper considers Q-Fano 3-folds X with ρ = 1. The aim is to determine the maximal Fano index f of X. We prove that f ≤ 19, and that in case of equality, the Hilbert series of X equals that of weighted projective space P(3, 4, 5, 7). We also consider all possibility of X for f ≥ 9. 0. Introduction We say that X is a Q-Fano variety if it has only terminal singularities, the anticanonical Weil...

متن کامل

Canonical Divisors on T-varieties

Generalising toric geometry we study compact varieties admitting lower dimensional torus actions. In particular we describe divisors on them in terms of convex geometry and give a criterion for their ampleness. These results may be used to study Fano varieties with small torus actions. As a first result we classify log del Pezzo C∗-surfaces of Picard number 1 and Gorenstein index ≤ 3. In furthe...

متن کامل

Smooth Projective Symmetric Varieties with Picard Number Equal to One

We classify the smooth projective symmetric varieties with Picard number equal to one. Moreover we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that a such variety X is smooth if and only if an appropriate toric variety contained in X is smooth. A Gorenstein normal algebraic variety X over C is called a Fa...

متن کامل

Smooth Projective Symmetric Varieties with Picard Number One

We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth. keywords:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008